Вопрос задан 23.09.2023 в 03:34. Предмет Геометрия. Спрашивает Сархыт Айдос.

Трикутник A1B1C1 трикутник A2B2C2 A2B1=3см, A2B2=6см, A1C1=4см. Знайти A2C2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Орлов Паша.

Ответ:

Відповідь: A2C2 = 8 см.

Пояснення:

Застосуємо теорему Піфагора для трикутника A2B2C2, що містить катет A2B2 = 6см і відрізок A2B1 = 3 см:

AB2^2 = A2B1^2 + A2B2^2 = 3^2 + 6^2 = 45

Знайдемо відрізок AB2:

AB2 = AC1 + CB1 = A1C1 + CB1

Так як трикутник A1B1C1 подібний до трикутника A2B2C2, то відповідні сторони пропорційні. Можемо записати наступну рівність:

AB2/B1C1 = A2B2/B2C2

Умова задачі говорить, що A1C1 = 4 см, тож з розумінням пропорцій можна виразити AB2:

AB2/B1C1 = A2B2/B2C2 ==> AB2 = (B1C1 * A2B2) / A2C2

AB2 = (A1C1 + CB1) ==> A1C1 + CB1 = (B1C1 * A2B2) / A2C2

Так як CB1 = CC2 і B1C1 = B2C2, можемо переписати формулу у вигляді:

A1C1 + CC2 = (B2C2 * A2B2) / A2C2

Тепер підставимо відомі значення та вирішимо рівняння:

4 см + CC2 = (6 см * 3 см) / A2C2

A2C2 = (6 см * 3 см) / (4 см - CC2)

Користуючись теоремою Піфагора для трикутника A2C2C1, можемо записати наступне рівняння:

AC1^2 + CC2^2 = A2C2^2

Тепер підставимо значення та вирішимо рівняння:

4 см^2 + CC2^2 = (6 см * 3 см)^2 / (4 см - CC2)^2

CC2^2 (4 см - CC2)^2 = (6 см * 3 см)^2 - 4 см^4

CC2^2 (16 см^2 - 8 см CC2 + CC2^2) = 252 см^2

16 CC2^2 - 8 CC2^3 + CC2^4 = 252

CC2^4 - 8 CC2^3 + 16 CC2^2 - 252 = 0

(CC2 - 6)(CC2 + 2)^3 = 0

Так як CC2 не може бути від'ємним відстанню, він повинен бути рівний 6, і тоді ми отримаємо:

A2C2 = (6 см * 3 см) / (4 см - 6 см) = -18 см / (-2 см) = 9 см

Але так як A2C2 повинна бути позитивною відстанню, ми робимо висновок, що CC2 = -2 не є дійсним розв'язком. Отже, єдиним правильним розв'язком є CC2 = 6 см, що дає значення A2C2 = 8 см.

0 0
Отвечает Барахоева Дениза.

Объяснение:

відповідь на фото.

НАПЕРЕД ДЯКУЮ ЗА КРАЩУ ВІДПОВІДЬ !

РАДИЙ БУВ ДОПОМОГТИ !

пропорційність складена відповідно до ознак. подібності трикутників.




0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження довжини відрізка A2C2 у трикутнику A2B2C2 ми можемо скористатися теоремою Піфагора, оскільки у нас є довжини сторін A2B2 і A1C1.

  1. Знайдемо довжину відрізка A1B2. Відомо, що A2B1 = 3 см і A1C1 = 4 см. За властивостями трикутника A1B2C1 можна зробити висновок, що A1B2 = A2B1 + A1C1 = 3 см + 4 см = 7 см.

  2. Тепер ми можемо знайти довжину відрізка A2C2 за допомогою теореми Піфагора в трикутнику A2B2C2:

    A2C2^2 = A2B2^2 + B2C2^2

    Де:

    • A2B2 = 6 см (відомо)
    • B2C2 = A1B2 = 7 см (знайдено в кроці 1)
  3. Підставимо відомі значення в теорему Піфагора і знайдемо A2C2:

    A2C2^2 = 6^2 + 7^2 A2C2^2 = 36 + 49 A2C2^2 = 85

    A2C2 = √85 ≈ 9.22 см

Отже, довжина відрізка A2C2 у трикутнику A2B2C2 приблизно дорівнює 9.22 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос