Вопрос задан 01.08.2023 в 20:16. Предмет Геометрия. Спрашивает Бояров Владимир.

4. В прямоугольном треугольнике ABC. AD бис. , проведённая из вершины прямого угла , угол ADB = 100

градусам, найдите острые углы. ПОЖАЛУЙСТА
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курявский Илья.
Угол АДС=180-100=80градусов(тк углы АДС и АДБ смежные)угол САД=180 - угол С-80=180-90-80=10градусовтк АД биссектриса, значит угол А=10+10=20угол В = 180-90-20=70 градусовОтвет: угол А=20градусов, угол В=70градусов

0 0
Отвечает Гавриков Кирилл.
Образовалось два треугольника
Рассмотрим ADB: Угол DAB=0,5BAC=45Гр угол ADB=100Гр угол ABD=180-(100+45)=35Гр
Угол ACB= 180-(90+35)=55Гр
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи, воспользуемся свойствами прямоугольного треугольника и биссектрисы угла.

У нас есть прямоугольный треугольник ABC, причем угол ADB (где D - точка пересечения биссектрисы угла A и стороны BC) равен 100 градусам. Так как треугольник ABC прямоугольный, то угол ADC также равен 90 градусам.

Поскольку AD является биссектрисой угла A, угол BAD равен половине угла ADB, то есть 100 градусов / 2 = 50 градусов.

Теперь мы можем найти острый угол BAC. Сумма углов треугольника равна 180 градусам. Таким образом,

Угол BAC = 180° - (угол BAD + угол ADC) Угол BAC = 180° - (50° + 90°) Угол BAC = 180° - 140° Угол BAC = 40°

Таким образом, острый угол BAC равен 40 градусам.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос