
биссектриса угла прямоугольника делит его большую сторону на две части каждая из которых равна 8 см
найти периметр прямоугольника

Ответы на вопрос





Для решения этой задачи, давайте обозначим периметр прямоугольника за P, а длину его большей стороны за a.
Мы знаем, что биссектриса угла (прямоугольника) делит большую сторону на две равные части. Это означает, что у нас получится два равных отрезка длиной 8 см каждый. Так как биссектриса делит угол пополам, мы также можем сказать, что прямоугольник делится на два прямоугольных треугольника, каждый с катетами 8 см.
Давайте обозначим катеты одного из этих прямоугольных треугольников за x и y (каждый равен 8 см).
Теперь мы можем использовать теорему Пифагора, чтобы найти длину гипотенузы (большей стороны прямоугольника):
a^2 = x^2 + y^2 a^2 = 8^2 + 8^2 a^2 = 64 + 64 a^2 = 128 a = √128 a ≈ 11.31 см
Теперь, когда у нас есть длина большей стороны (a), мы можем найти периметр прямоугольника (P):
P = 2 * (a + 8) P = 2 * (11.31 + 8) P = 2 * 19.31 P ≈ 38.62 см
Ответ: Периметр прямоугольника составляет примерно 38.62 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili