Вопрос задан 18.07.2018 в 01:43. Предмет Геометрия. Спрашивает Яценко Лёня.

1 Найдите площадь выпуклого четырехугольника, если его диагонали равны 8 см и 10 см и угол между

ними равен 45°. 2 Пусть АА1 и ВВ1 - медианы треугольника АВС, АА1 = 12 см, ВВ1 = 15 см. Медианы пересекаются в точке О, и угол АОВ = 120°. Найдите площадь треугольника АВС.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баланин Андрей.

Площадь выпуклого четырехугольника равна половине произведения его диагоналей, умноженной на синус угла между ними. То есть, S=1/2*d1*d2*sinA, в нашем случае d1=8, d2=10, sinA=√2/2, тогда S=1/2*8*10*√2/2=20√2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос