Вопрос задан 20.07.2023 в 10:44. Предмет Геометрия. Спрашивает Лукьяненкова Алёнка.

Помогите пожалуйста Дан прямоугольный треугольник ABC, угол С=90 град., СД-высота , СВ=6 см.,

угол В=30 град. Найдите СД
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бодров Данила.

Против ∠В= 30° в прямоугольном треугольнике СДВ /т.к. СД -высота/ лежит катет СД, который по свойству равен половине гипотенузы СВ, равной 6см, поэтому СД =6/2=3/см/

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи, мы можем воспользоваться тригонометрическими соотношениями для прямоугольного треугольника.

Обозначим стороны треугольника как: AB = c (гипотенуза), BC = a (катет, прилегающий к углу В), AC = b (катет, прилегающий к углу С).

Из условия задачи известны значения: СВ (BC) = 6 см (катет), угол В = 30 градусов.

Используем тригонометрический закон синусов для нахождения стороны AC (b):

sin(угол В) = (противолежащий катет BC) / (гипотенуза AB)

sin(30°) = 6 / AB

AB = 6 / sin(30°) AB = 6 / 0.5 AB = 12 см

Теперь, для нахождения стороны СД (CD), мы можем использовать теорему Пифагора:

AB^2 = AC^2 + BC^2

12^2 = b^2 + 6^2

144 = b^2 + 36

b^2 = 144 - 36 b^2 = 108

b = √108 b ≈ 10.39 см

Таким образом, сторона СД (CD) равна приблизительно 10.39 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос