Вопрос задан 19.07.2023 в 05:31. Предмет Геометрия. Спрашивает Доронина Даша.

отрезок ВМ медиана треугольника АВС. На продолжении отрезка МВ точки В обозначили точку D так, что

BD = BC. Известно, что AD = 2BM, угол CBM = 40 градусов. Найдите угол ADB
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Распопова Дарья.

Ответ:

<ADB = 40°

Объяснение:

Большинство задач с медианой решается через дополнительное построение параллелограмма с диагональю, равной удвоенной медиане.

Продолжим медиану ВМ за точку М и отложим на продолжении точку Р так, что МР = МВ. Соединив точку Р с точками А и С получим параллелограмм АВСР (по признаку: "Четырёхугольник является параллелограммом, если его диагонали пересекаются и точкой пересечения делятся пополам".  

Рассмотрим треугольники ADB  и РВС.

AD=BP=2*BM (по построению), BC=BD (дано), АВ= РС (по построению).

Треугольники равны по трем сторонам, равны и их соответственные углы.   <BDA = <PBC = 40°.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти угол ADB, давайте разберемся с данными условиями шаг за шагом.

  1. Медиана треугольника делит сторону на две равные части. Из условия AD = 2BM следует, что MD = 2MB.

  2. Так как BD = BC и угол CBM = 40 градусов, то угол CBD также равен 40 градусов.

Теперь мы можем построить вспомогательный треугольник BMD:

Угол BMD равен половине угла CBD, то есть 40/2 = 20 градусов.

Также, у нас есть MD = 2MB.

Теперь рассмотрим треугольник AMD:

Угол MDA равен 180 - угол BMD - угол CBD = 180 - 20 - 40 = 120 градусов.

Теперь перейдем к треугольнику ADB:

Угол ADB равен 180 - угол MDA - угол BDM = 180 - 120 - 20 = 40 градусов.

Таким образом, угол ADB равен 40 градусов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос