в равнобедренной трапеции основания равны 8 см и 10 см высота трапеции 5 см. Найдите боковую
сторону трапецииОтветы на вопрос
Ответ:
√26
Объяснение:
.......... ....... ...
по теореме пифагора
Для нахождения боковой стороны трапеции вам понадобится использовать теорему Пифагора.
В данной задаче основания трапеции равны 8 см и 10 см, а высота равна 5 см. Обозначим боковую сторону трапеции как "x".
Разделим трапецию на два прямоугольных треугольника, основаниями которых являются основания трапеции, а боковая сторона - это гипотенуза.
В первом треугольнике: Основание = 8 см Высота = 5 см
Во втором треугольнике: Основание = 10 см Высота = 5 см
Применим теорему Пифагора для каждого из треугольников:
Для первого треугольника: x^2 = (8/2)^2 + 5^2 x^2 = 4^2 + 5^2 x^2 = 16 + 25 x^2 = 41
Для второго треугольника: x^2 = (10/2)^2 + 5^2 x^2 = 5^2 + 5^2 x^2 = 25 + 25 x^2 = 50
Таким образом, мы получаем два значения для боковой стороны трапеции: √41 и √50.
Возможно, вы хотите уточнить условие задачи, чтобы определить, какое из двух значений правильное.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
