Вопрос задан 13.07.2023 в 05:59. Предмет Геометрия. Спрашивает Кузнецов Паша.

Дано геометричну прогресію: 5;20;.... Обчисліть третій член прогресії: b3=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Saenko Ruslana.

Объяснение:

b1=5

q=b2/b1

q=20:5

q=4

b3=b2*q

b3=20*4

b3=80

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Геометрична прогресія - це послідовність чисел, в якій кожне наступне число отримується множенням попереднього на одне і те ж число, яке називається знаменником геометричної прогресії.

Для знаходження третього члена прогресії, потрібно знайти другий член і знаменник прогресії.

Перший член геометричної прогресії (a₁) - 5. Другий член геометричної прогресії (a₂) - 20.

Знаменник геометричної прогресії (q) - відношення будь-якого члена до попереднього члена. Його можна знайти за допомогою формули: q = a₂ / a₁

В нашому випадку: q = 20 / 5 = 4

Тепер можемо знайти третій член (a₃) геометричної прогресії за допомогою формули: a₃ = a₂ * q

Підставимо відповідні значення: a₃ = 20 * 4 = 80

Таким чином, третій член геометричної прогресії дорівнює 80.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос