
Дам 20 баллов! Найдите радиус окружности, вписанной в равнобедренный треугольник, боковая сторона
которого равна 10 см, а основание равно 12 см.

Ответы на вопрос

Ответ:
Объяснение:
первым делом мы должны найти площадь треугольника потом полу периметр и из формула найдём радиус вписанной окружности




Спасибо за предложение баллов! Я рад помочь с решением задачи.
Для того чтобы найти радиус окружности, вписанной в равнобедренный треугольник, можно воспользоваться формулой для радиуса вписанной окружности в треугольнике:
Радиус (r) = (Полупериметр треугольника) / (Полупериметр треугольника - одна из сторон треугольника)
Полупериметр треугольника (s) можно найти, сложив все его стороны и разделив полученную сумму на 2:
s = (10 + 10 + 12) / 2 = 32 / 2 = 16 см
Теперь, используем формулу для нахождения радиуса:
r = 16 / (16 - 10) = 16 / 6 ≈ 2.67 см
Таким образом, радиус окружности, вписанной в данный равнобедренный треугольник, составляет примерно 2.67 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili