Вопрос задан 12.07.2023 в 16:01. Предмет Геометрия. Спрашивает Колач Настя.

Знайдіть координати вектора -2АВ якщо задано точки A(2;-1;3) і В(-4;1;3)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ярцев Антон.

Ответ:

Объяснение:

Решение дано на фото.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти вектор -2AB, спочатку знайдемо вектор AB, а потім змножимо його на -2.

Вектор AB можна знайти, віднімаючи координати точки A від координат точки B:

AB = (x_B - x_A, y_B - y_A, z_B - z_A)

де (x_A, y_A, z_A) - координати точки A, а (x_B, y_B, z_B) - координати точки B.

Для нашого прикладу:

(x_B, y_B, z_B) = (-4, 1, 3) (x_A, y_A, z_A) = (2, -1, 3)

AB = (-4 - 2, 1 - (-1), 3 - 3) AB = (-6, 2, 0)

Тепер, щоб знайти вектор -2AB, просто множимо кожну компоненту вектора AB на -2:

-2AB = -2 * (-6, 2, 0) -2AB = (2 * 6, -2 * 2, -2 * 0) -2AB = (12, -4, 0)

Таким чином, координати вектора -2AB дорівнюють (12, -4, 0).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос