Вопрос задан 10.07.2023 в 16:45. Предмет Геометрия. Спрашивает Алисейко Полина.

Высоты треугольника пересекаются в точке O. Величина угла ∡ BAC = 76°,

величина угла ∡ ABC = 85°. Определи угол ∡ AOB.   ∡ AOB = 
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ромайская Ангелина.

Ответ:

Объяснение:

∠ВAE =180-∠AEB-∠B=180-76-90=14°,  

∠C=180-∠A-∠B=180-76-85=19°

∠DBE=90-∠C=90-19=71°

∠ABO=85-∠DBE=85-71=14°

∠ AOB=180°-(∠BAE+∠ABO)=180-(14+14)=152°

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Угол ∡AOB можно определить, используя свойства пересекающихся хорд в окружности.

Учитывая, что высоты треугольника пересекаются в точке O, мы можем представить этот треугольник как описанный вокруг окружности. Тогда угол между хордой AB и хордой AC равен углу ∡AOB.

Согласно свойству описанных углов, центральный угол, соответствующий хорде AB, равен вдвое углу ∡BAC (поскольку ∡BAC - это угол, опирающийся на хорду AC).

Таким образом, угол ∡AOB равен двойному углу ∡BAC:

∡AOB = 2 * ∡BAC = 2 * 76° = 152°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос