
30 Баллов. 1. Найдите координаты точек, симметричных точкам С (2; -1) и Д(-4;0) относительно 1)
оси ординат; 2) оси абсцисс; 3) начала координат. 2. Начертите треугольник DEF. Постройте образ треугольника DEF: 1) при параллельном переносне на ВЕКТОР DE; 2) при симметрии относительно точки F; 3) при симметрии относительно прямой DF. 3. Точка Р1 (х;5) является образом точки В (-7;у) при гомотетти с центром Н (3; -1) и коэффициент k=-1/2. Найдите x и y.

Ответы на вопрос

Ответ:
Объяснение:
1) С(-2;-1) Д(4;0)
2)С(2;1) Д лежит на оси абсцисс
3)С(-2;1) Д(-4;0)
3.
x¹ = k(x-xцентра)+xцентра
x¹ = -1/2(-7-3)+3 = 8
y =( (y₁-yцентра)/k)+yцентра
y = ( (5-(-1))/-1/2)+(-1) = -13




Найдем координаты симметричных точек относительно осей и начала координат:
Относительно оси ординат: Точка С (2, -1) становится (-2, -1) Точка Д (-4, 0) становится (4, 0)
Относительно оси абсцисс: Точка С (2, -1) становится (2, 1) Точка Д (-4, 0) остается (-4, 0)
Относительно начала координат: Точка С (2, -1) становится (-2, 1) Точка Д (-4, 0) становится (4, 0)
Начертите треугольник DEF и выполните преобразования:
Начертите треугольник DEF с вершинами: D(-4, 0), E(x, 5), F(0, 0)
Параллельный перенос на вектор DE: Каждая точка треугольника сдвигается на вектор DE(-4 - x, 5 - 0) = (-4 - x, 5). Таким образом, новые координаты треугольника DEF будут: D'(-4 - x, 5), E'(-4, 5), F'(-x, 0)
Симметрия относительно точки F: Каждая точка треугольника отражается относительно точки F(0, 0): D'(-(-4 - x), -5), E'(-(-4), -5), F'(-(-x), 0) = D'(4 + x, -5), E'(4, -5), F'(x, 0)
Симметрия относительно прямой DF: Прямая DF имеет уравнение y = -x/2. Для симметрии относительно неё меняем знак y-координаты и находим соответствующее x: D'(-(-4 - x), -(-5)) = D'(4 + x, 5), E'(-(-4), -(-5)) = E'(4, 5), F'(-(-x), 0) = F'(x, 0)
Точка Р1 (х, 5) является образом точки В (-7, у) при гомотетии с центром Н (3, -1) и коэффициентом k = -1/2. Найдем x и y:
Формула гомотетии: P' = H + k * (P - H), где P' - новое положение точки, H - центр гомотетии, k - коэффициент гомотетии, P - исходная точка.
Для точки В(-7, у): P' = (3, -1) - (1/2) * ((-7, у) - (3, -1)) = (3, -1) - (1/2) * (-7 - 3, у + 1) = (3, -1) - (-5/2, у/2 + 1/2) = (3 + 5/2, -1 - у/2 - 1/2) = (13/2, -1 - у/2).
Так как P' = (x, 5), мы можем установить равенство для соответствующих координат: x = 13/2 5 = -1 - у/2.
Решим второе уравнение относительно y: у/2 = -6 у = -12.
Итак, x = 13/2, y = -12.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili