Вопрос задан 07.07.2023 в 08:03. Предмет Геометрия. Спрашивает Куцулима Богдан.

Спростіть вираз cos^2x×tg^2x+cos^2x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лазарук Дарья.

Ответ:

cos 2x+ tg 2x cos 2x=cos 2x + sin 2x

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб спростити цей вираз, використовуючи тригонометричні тотожності, спочатку розглянемо кожен з компонентів окремо:

  1. cos^2(x) * tg^2(x): Використовуємо тотожність: tg^2(x) = sec^2(x) - 1. Замінюємо tg^2(x): cos^2(x) * (sec^2(x) - 1) = cos^2(x) * sec^2(x) - cos^2(x).

  2. cos^2(x): Залишаємо без змін.

Після об'єднання компонентів, маємо:

cos^2(x) * sec^2(x) - cos^2(x) + cos^2(x).

Також, відомо, що sec^2(x) = 1/cos^2(x), тому можемо замінити:

cos^2(x) * (1/cos^2(x)) - cos^2(x) + cos^2(x) = 1 - cos^2(x) + cos^2(x).

Спрощуючи подальше, отримаємо:

Отже, спрощений вираз: 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос