Вопрос задан 04.07.2023 в 03:54. Предмет Геометрия. Спрашивает Шейфер Карина.

У треугольника Abc игол A =80градусов а угол C 30под каким углом пересекаются высоты AM и CN​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коронов Максим.

Ответ:  110*  или  70*.

Объяснение:

Рассмотрим треугольник АМС. В нем один угол равен 90*, другой 30*.

Найдем угол МАС=180*-(30*+90*)=60*.

Найдем угол АСN=180*-(80*+90*)=10*.

Из треугольника АОС угол АОС=180*-(60*+10*)=180-70*=110* или смежный ему 180*-110*=70*.

********************

Как-то так...  :))  Удачи!

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи, нам потребуется использовать свойства треугольников и высот.

По условию у нас есть треугольник ABC, где известны углы A и C:

Угол A = 80° Угол C = 30°

Высоты треугольника пересекаются в одной точке (ортоцентр) и образуют систему пересекающихся отрезков. Высоты будут перпендикулярны сторонам треугольника, на которые они опущены.

Известно, что сумма углов треугольника равна 180°. Поэтому:

Угол B = 180° - (Угол A + Угол C) = 180° - (80° + 30°) = 180° - 110° = 70°

Теперь мы знаем все три угла треугольника ABC:

Угол A = 80° Угол B = 70° Угол C = 30°

Так как высоты перпендикулярны сторонам, то они также образуют прямые углы с этими сторонами. Таким образом, угол, под которым пересекаются высоты AM и CN, будет равен:

Угол AMN = Угол A + Угол C = 80° + 30° = 110°

Итак, угол между высотами AM и CN равен 110°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос