Вопрос задан 03.07.2023 в 16:10. Предмет Геометрия. Спрашивает Кононов Даня.

В паралеллаграмме KMNP проведена биссектриса угла MKP которая пересекает сторону MN в точке E а)

докажите что треугольник KME равнобедренный. б) найдите сторону KP если ME =10см, а периметр паралеллаграмма равен 52смПомогите пожалуйста
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юхимець Роман.

Ответ:

a) т.к. KMNP - паралелограм, значит MN паралельна KP. KE - секущая, значит угол ЕКР = МЕК, следовательно тр. КМЕ - равнобедренный.

б)т.к. тр. КМЕ равноб., значит МЕ = КМ = 10. КМ = NP по св-ву паралелограма. KP = (52 - (10 + 10))/ 2 = 16


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим задачу по шагам:

а) Докажем, что треугольник KME является равнобедренным.

У нас есть параллелограмм KMNP, и в нем проведена биссектриса угла MKP, которая пересекает сторону MN в точке E. Это означает, что угол MKP равен углу EKP (по свойству биссектрисы). Также, так как KMNP - параллелограмм, угол KMN равен углу KPN (соответственные углы параллельных сторон).

Теперь мы имеем следующие равенства углов:

  1. Угол MKP = Угол EKP (биссектриса)
  2. Угол KMN = Угол KPN (параллельные стороны)

Сумма углов в треугольнике MKP равна 180 градусам. Поэтому:

Угол MKP + Угол KMN + Угол KPN = 180°

Заменим углы согласно вышеуказанным равенствам:

Угол EKP + Угол KMN + Угол KPN = 180°

Так как углы KMN и KPN равны, мы можем записать:

2 * Угол KMN + Угол EKP = 180°

Угол EKP равен углу MKP по свойству биссектрисы:

2 * Угол KMN + Угол MKP = 180°

Из этого уравнения видно, что угол KMN равен углу MKP, то есть треугольник KME является равнобедренным.

б) Теперь найдем сторону KP, используя данную информацию.

Периметр параллелограмма KMNP равен сумме всех его сторон:

Периметр = KP + PN + MN + KM

У нас также есть информация, что периметр равен 52 см:

52 = KP + PN + MN + KM

Известно, что сторона MN равна стороне KP (по свойству параллелограмма), и также сторона KM равна стороне PN. Поэтому у нас есть:

52 = 2 * KP + 2 * KM

Так как KM = PN, то:

52 = 2 * KP + 2 * PN

Мы также знаем, что сторона ME равна 10 см. Поэтому PN равно ME:

PN = ME = 10 см

Теперь у нас есть уравнение:

52 = 2 * KP + 2 * 10

Решая это уравнение, найдем значение KP:

52 = 2 * KP + 20

2 * KP = 52 - 20

2 * KP = 32

KP = 32 / 2

KP = 16 см

Итак, сторона KP равна 16 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос