Вопрос задан 02.07.2023 в 03:36. Предмет Геометрия. Спрашивает Кузнецов Ваня.

Дана равнобедренная трапеция АВCD, тупой утол которой равен 120° .Найдите угол между векторами СD и

AD срочно помогите!!​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Балянов Дмитрий.
Сумма углов в трапеции = 360*
уг АВС = 120*, => уг ВСD = 120* (т.к. трапеция равнобедренна)
тогда уг DAB = уг CDA = 360 - 120 * 2 / 2 = 360 - 240 / 2 = 120 / 2 = 60*
угол между векторами CD и AD - это угол CDA, значит ответ - 60*
1 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Обозначим точки следующим образом:

  • A: верхний левый угол трапеции
  • B: верхний правый угол трапеции
  • C: нижний правый угол трапеции
  • D: нижний левый угол трапеции

Так как у трапеции АВCD равные боковые стороны AB и CD (так как она равнобедренная), угол между ними (угол BAC или угол CDA) будет равен половине разности угла при вершине A и 180°, так как сумма углов внутри треугольника равна 180°.

Угол BAC = (180° - 120°) / 2 = 30°.

Теперь, угол между векторами CD и AD будет равен углу BAC, так как вектор AD лежит на стороне трапеции, и вектор CD лежит на её основании.

Таким образом, угол между векторами CD и AD составляет 30°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос