
1. Постройте прямоугольный треугольник ABC (LC= 90°), если: 1) sinA= 4/72) cosA= 3/53) tgA = 2/5


Ответы на вопрос

Ответ:
М ... Ну тут просто нужно вспомнить, что tg - отношение противолежащего катета к прилежащему. Стало быть, BC/AC = 2/3.
cos - отношение прилежащего катета к гипотенузе, т. е. AC/AB = 3/5. Т. е. можно взять, например, BC = 2 см, AC = 3 см ... и т. д. Единицы измерения выбери по вкусу = )



Для построения прямоугольного треугольника ABC, где угол C равен 90 градусов, мы можем использовать тригонометрические соотношения для нахождения длин сторон треугольника.
Для начала найдем длину стороны, противолежащей углу A (сторона BC). Для этого используем соотношение sin(A) = противолежащая сторона / гипотенуза:
sin(A) = 4/7
Пусть длина стороны BC равна x:
sin(A) = BC / AC 4/7 = x / AC
Теперь найдем длину стороны, прилегающей к углу A (сторона AB). Для этого используем соотношение cos(A) = прилегающая сторона / гипотенуза:
cos(A) = 3/5
cos(A) = AB / AC 3/5 = AB / AC
Теперь мы имеем два уравнения с двумя неизвестными (x и AC). Мы можем решить эту систему уравнений методом подстановки или методом умножения и деления. В этом случае, давайте решим ее методом умножения и деления.
Из первого уравнения:
4/7 = x / AC
Мы можем умножить обе стороны на 7, чтобы избавиться от дроби:
4 = 7x / AC
Теперь из второго уравнения:
3/5 = AB / AC
Мы можем умножить обе стороны на 5, чтобы избавиться от дроби:
3 = 5AB / AC
Теперь мы имеем два уравнения без дробей:
- 4 = 7x / AC
- 3 = 5AB / AC
Теперь, чтобы найти значения x, AB и AC, мы можем решить эту систему уравнений. Мы также знаем, что угол C равен 90 градусов, что означает, что AC - гипотенуза треугольника.
Давайте решим уравнения:
Из первого уравнения:
4 = 7x / AC
Теперь умножим обе стороны на AC:
4AC = 7x
Из второго уравнения:
3 = 5AB / AC
Теперь умножим обе стороны на AC:
3AC = 5AB
Теперь у нас есть два уравнения:
- 4AC = 7x
- 3AC = 5AB
Мы также знаем, что угол C равен 90 градусов, что означает, что AC - это гипотенуза. Таким образом, мы можем использовать теорему Пифагора для нахождения длины AC:
AC^2 = BC^2 + AB^2
Подставим значения BC и AB из уравнений 1 и 2:
AC^2 = (7x)^2 + (5AB)^2
Теперь мы можем решить систему уравнений и найти значения x, AB и AC.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili