Вопрос задан 28.06.2023 в 01:23. Предмет Геометрия. Спрашивает Llorens Natasha.

в прямоугольном треугольнике гипотенуза равна 8 см а острый угол равен 30 градусов найдите катет a

и b острых углов включить задачу двумя способами
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мищенкова Анастасия.

Ответ:60 градусов

Объяснение: так как прямоугольный треугольник равен 90 градусов. Тогда 90-30=60

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Вы можете найти катеты прямоугольного треугольника, зная гипотенузу и угол между гипотенузой и одним из катетов (в данном случае, 30 градусов), двумя способами: с использованием тригонометрических функций синуса и косинуса.

Способ 1: Используя синус и косинус:

  1. Сначала найдем катет a, который находится напротив угла 30 градусов (противоположный катет):

    a = гипотенуза * sin(угол) a = 8 см * sin(30 градусов) a = 8 см * 0,5 a = 4 см

  2. Теперь найдем катет b, который будет противоположным катетом к острую углу (60 градусов), так как в прямоугольном треугольнике сумма углов равна 180 градусам:

    b = гипотенуза * sin(90 - угол) b = 8 см * sin(90 - 30 градусов) b = 8 см * sin(60 градусов) b = 8 см * (√3 / 2) b = 4√3 см

Способ 2: Используя тригонометрические отношения катетов:

  1. Также начнем с нахождения катета a:

    a = гипотенуза * cos(угол) a = 8 см * cos(30 градусов) a = 8 см * (√3 / 2) a = 4√3 см

  2. Теперь найдем катет b, используя свойство тригонометрических отношений в прямоугольных треугольниках:

    b = гипотенуза * tan(угол) b = 8 см * tan(30 градусов) b = 8 см * (1 / √3) b = (8/√3) см b = (8√3 / 3) см

Оба способа дают вам значения катетов a и b: a = 4√3 см и b = (8√3 / 3) см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос