Вопрос задан 27.06.2023 в 03:18. Предмет Геометрия. Спрашивает Жовнерчук Макс.

Найдите все углы образованные при пересечении двух прямых секущей если один из углов больше другого

на 45° ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зундо Артем.

Ответ:

∠α=67,5°

∠β=180-67,5=112,5°

Объяснение:

180°=∠α+∠α+45; ∠α=(180-45)/2=67,5°

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения углов, образованных при пересечении двух прямых секущей, где один из углов больше другого на 45 градусов, мы можем воспользоваться следующим методом.

Обозначим больший угол как α и меньший как β. По условию задачи, α больше β на 45 градусов. Теперь давайте предположим, что α равен x градусов, то β будет равен (x - 45) градусов.

Сумма углов, образованных пересечением двух прямых секущей, всегда равна 360 градусов. Таким образом, мы можем записать уравнение:

α + β = 360 градусов

Теперь мы знаем, что α = x градусов и β = (x - 45) градусов, поэтому:

x + (x - 45) = 360

Теперь решим это уравнение:

2x - 45 = 360

2x = 360 + 45

2x = 405

x = 405 / 2

x = 202.5 градусов

Теперь, когда мы знаем значение x, мы можем найти значения α и β:

α = 202.5 градусов β = x - 45 = 202.5 - 45 = 157.5 градусов

Итак, больший угол α равен 202.5 градусов, а меньший угол β равен 157.5 градусов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос