Вопрос задан 18.06.2023 в 18:28. Предмет Геометрия. Спрашивает Переверзев Антон.

Висота конуса дорівнює 15 см, а радіус його основи - 10 см. На відстані 3 см від вершини конуса

проведено площину, перпендикулярну до осі, яка перетинає бічну поверхню по колу. Знайдіть радіус перерізу та довжину кола, що утворилося в перерізі
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Барашева Яна.

Радіус на відстані 3 см від вершини:

10/15*3=2/3*3=2см

Довіжина кола 2*pi*R:

2*2*pi=4*pi≈12,57 см

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the height of a cone (15 cm) and the radius of its base (10 cm). A plane is drawn 3 cm away from the vertex of the cone, perpendicular to its axis, and it intersects the lateral surface of the cone in a circle. We need to find the radius of this circle and the length of the circumference.

Solution

To solve this problem, we can use the properties of similar triangles. Let's consider the following diagram:

``` A /| / | / | / | h = 15 cm / | / | / | / | / | / | / | / | / | / | / | B---------------C ```

In the diagram above, the cone is represented by the triangle ABC. The vertex of the cone is A, the base of the cone is the circle with center C and radius r, and the point where the plane intersects the lateral surface of the cone is B.

We can see that triangle ABC is similar to triangle ADB, where D is the point where the plane intersects the base of the cone. This is because both triangles share the angle at A and have a right angle at D.

Using the properties of similar triangles, we can set up the following proportion:

``` AB / AD = AC / AB ```

Since AB = 3 cm and AD = 15 cm, we can substitute these values into the proportion:

``` 3 / 15 = AC / 3 ```

Simplifying the equation, we find:

``` AC = 9 cm ```

Therefore, the radius of the circle formed by the intersection of the plane and the lateral surface of the cone is 9 cm.

To find the length of the circumference of this circle, we can use the formula for the circumference of a circle:

``` C = 2πr ```

Substituting the value of the radius (9 cm) into the formula, we find:

``` C = 2π * 9 = 18π cm ```

Therefore, the length of the circumference of the circle formed by the intersection of the plane and the lateral surface of the cone is 18π cm.

Summary

In summary, the radius of the circle formed by the intersection of the plane and the lateral surface of the cone is 9 cm, and the length of the circumference of this circle is 18π cm.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос