Вопрос задан 16.06.2023 в 21:58. Предмет Геометрия. Спрашивает Клишина Настя.

Точка А знаходиться на відстані корінь з 6 см від від вершини рівностороннього трикутника зі

стороною корінь з 6 см.Знайти відстань від точки А до площини трикутника?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ким Рамина.

Ответ:

Расстояние от точки А до плоскости треугольника равно 2 см.

Объяснение:

Точка А находится на расстоянии √6 см от вершины равностороннего треугольника со стороной √6 см. Найти расстояние от точки А до плоскости треугольника?

Дано: ΔКВС - равносторонний;

КВ = ВС = КС = √6 см;

А ∉ КВС;

АК = АВ = АС = √6 см;

Найти: АО.

Решение:

Рассмотрим ΔКВС - равносторонний.

  • В равностороннем треугольника все биссектрисы являются медианами и высотами.

⇒ ВМ = МС = \displaystyle        \frac{\sqrt{6} }{2} см

Рассмотрим ΔКМС - прямоугольный.

По теореме Пифагора найдем КМ:

КМ² = КС² - МС² = \displaystyle        6-\frac{6}{4}=\frac{18}{4}=\frac{9}{2}

КМ = \displaystyle        \frac{3}{\sqrt{2} }=\frac{3\sqrt{2} }{2}  (см)

  • Если точка равноудалена от вершин треугольника, то основание перпендикуляра, опущенного из этой точки на плоскость, совпадает с центром вписанной и описанной окружности.

⇒ точка О - пересечение биссектрис, медиан, высот.

  • Медианы точкой пересечения делятся в отношении 2 : 1, начиная от вершины.

⇒ КО = \displaystyle        \frac{3\sqrt{2} }{2}\cdot \frac{2}{3} =\sqrt{2} (см)

Рассмотрим ΔКАО - прямоугольный.

По теореме Пифагора найдем АО:

АО² = АК² - КО² = 6 - 2 = 4

АО = √4 = 2 (см)

Расстояние от точки А до плоскости треугольника равно 2 см.

#SPJ1


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі використаємо теорему Піфагора.

Нехай точка А знаходиться на відстані h від площини трикутника. Тоді можемо побудувати прямокутний трикутник, в якому один з катетів має довжину h, а гіпотенуза - сторона трикутника.

Оскільки трикутник є рівностороннім, то його сторона має довжину √6 см. Застосовуємо теорему Піфагора:

(√6)^2 = h^2 + (√6/2)^2

6 = h^2 + 6/4

h^2 = 6 - 6/4

h^2 = 24/4 - 6/4

h^2 = 18/4

h = √(18/4)

h = √9/2

h = 3/√2

Таким чином, відстань від точки А до площини трикутника дорівнює 3/√2 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос