Вопрос задан 15.06.2023 в 18:54. Предмет Геометрия. Спрашивает Кузнецов Степан.

Периметр равнобедренной трапеции с основаниями 12 см и 28 см , равен 60 см. Вычислите длину

высоты трапеции .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает DELETED.

Ответ:

Боковые стороны равнобедренной трапеции равны между собой

Каждая боковая сторона равна

60-(12+28):2=10 см

Проведём из тупых углов на БОльшее основание высоты,они отсекают от трапеции одинаковые прямоугольные Треугольники,равные по 3 признаку равенства прямоугольных треугольников-по гипотенузе и острому углу(гипотенуза-боковая сторона трапеции,а острый угол-углы при основании равнобедренной трапеции равны между собой)

Нам известен один из катетов
(28-12):2=16:2=8 см

По теореме Пифагора найдём второй катет,это и будет высота трапеции

Х^2=10^2-8^2
Х^2=100-64

Х^2=36
Корень квадратный из 36 равен 6

Ответ :высота трапеции 6 см

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления длины высоты трапеции воспользуемся формулой:

h = (2 * P) / (a + b),

где h - высота трапеции, P - периметр трапеции, a и b - длины оснований.

Подставим известные значения:

h = (2 * 60) / (12 + 28) = 120 / 40 = 3.

Таким образом, длина высоты трапеции равна 3 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос