
В треугольнике ABC, точки MNK - середины сторон AB, BC, AC. Найти периметр треугольника ABC, если
MN=12, MK=10, KN=8

Ответы на вопрос

Ответ:
MN, MK и KN - средние линии треугольника ABC. Средняя линия равна половине параллельной ей стороны треугольника. Поэтому AB = 2KN = 16
P(ABC) = 16 + 20 + 24 = 60
BC = 2MK = 20 , AC=2MN = 24 .



Чтобы найти периметр треугольника ABC, нужно вычислить длины его сторон.
Известно, что точки M, N и K являются серединами сторон треугольника. Таким образом, отрезки MN, MK и KN делят стороны треугольника пополам.
Поэтому длина стороны AB будет равна 2 * MN = 2 * 12 = 24.
Длина стороны BC будет равна 2 * NK = 2 * 8 = 16.
Длина стороны AC будет равна 2 * MK = 2 * 10 = 20.
Теперь мы знаем длины всех сторон треугольника ABC. Чтобы найти периметр, нужно просуммировать длины всех трех сторон:
Периметр = AB + BC + AC = 24 + 16 + 20 = 60.
Таким образом, периметр треугольника ABC равен 60.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili