Вопрос задан 18.02.2021 в 04:59. Предмет Геометрия. Спрашивает Борисовский Никита.

У прямоугольного треугольника АВС заданы гипотенуза АС =6см и катет АВ=5 см. Найти второй катет ВС

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Костина Карина.
По теореме Пифагора: 
ВС=√АС²-АВ² ⇒ √36-25=√11
Ответ: ВС=√11
0 0
Отвечает Лингер Денис.
Для этого нужна теорема пифагора.
AC=a, AB=b,BC=c
c-?

a²=√c²+b²
c²=√a²-b²
c²=√6²-5²
c²=√11
c≈3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи воспользуемся теоремой Пифагора, которая утверждает, что в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Из условия задачи известно, что гипотенуза AC = 6 см и катет AB = 5 см.

Применяя теорему Пифагора, получим:

AC^2 = AB^2 + BC^2

6^2 = 5^2 + BC^2

36 = 25 + BC^2

BC^2 = 36 - 25

BC^2 = 11

Теперь найдем квадратный корень из обеих сторон уравнения:

BC = √11

Таким образом, второй катет BC прямоугольного треугольника ABC равен √11 см, или приближенно 3.32 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос