Вопрос задан 09.02.2021 в 18:57. Предмет Геометрия. Спрашивает Вагин Андрей.

В окружности с центром O проведены диаметр AB и хорда BD . . определите периметр треугольника BOD ,

если AB =8 , BD = 3,5
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кравчук Максим.
Треугольник АВД - прямоугольный , т.к. угол АДВ опирается на диаметр АВ ( свойство трегуольника) .
BO - медиана ( ВО=АО) прямоугольного треугольника , значит по свойству прямоугольного треугольника  медиана , проведённая из прямого угла ,равна половине гипотенузы , т.е 4 см .
Периметр треугольника ВОД  = ВО+ОД+ВД= 3,5+4+4=11,5см 
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти периметр треугольника BOD, нам необходимо узнать длины всех его сторон.

В данном случае, AB является диаметром окружности, поэтому его длина равна 8.

Для нахождения длины хорды BD, мы можем использовать теорему о перпендикулярности хорды и диаметра. Эта теорема гласит, что если хорда BD перпендикулярна диаметру AB, то она делит его пополам. Таким образом, длина BD равна половине длины диаметра AB:

BD = AB/2 = 8/2 = 4.

Теперь у нас есть длины всех трех сторон треугольника BOD: BO = OD = AB/2 = 8/2 = 4 и BD = 4.

Периметр треугольника равен сумме длин его сторон:

Периметр BOD = BO + BD + OD = 4 + 4 + 4 = 12.

Таким образом, периметр треугольника BOD равен 12.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос