
Вопрос задан 03.11.2020 в 15:34.
Предмет Геометрия.
Спрашивает Медведев Валера.
найдите площадь боковой поверхности пирамиды, все грани которой наклонены к основанию под углом 60
градусов, а в основании лежит прямоугольный треугольник с катетами 3 см и 6 см.

Ответы на вопрос

Отвечает Кус Варвара.
Все грани пирамиды наклонены к основанию под углом 60 градусов, значит апофемы граней равны, а вершина пирамиды проецируется в центр вписанной в основание пирамиды окружности. Апофема находится по Пифагору из прямоугольного тр-ка, в котором она является гипотенузой, а катетом, лежащим против угла 30°, является радиус вписанной в основание (прямоугольный треугольник) окружности. Формула радиуса: r=(a+b-c)/2. Найдем гипотенузу основания с по Пифагору: с= √(36+9) = √45 =3√5. Вычислим по формуле радиус r = (9-3√5)/2. Тогда апофема (из приведенного выше) равна: h = (9-3√5). Площадь боковой поверхности S= (1/2)*h*P, где h - апофема, а Р - периметр основания.
S=[(9-3√5)*(9+3√5)]/2.
Или S=(81-45)/2= 18см².
S=[(9-3√5)*(9+3√5)]/2.
Или S=(81-45)/2= 18см².



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili