Вопрос задан 07.09.2020 в 23:49. Предмет Алгебра. Спрашивает Попов Кирилл.

|2x-3|-|4-x|=x-1 помогите |- это модуль

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation |2x-3|-|4-x|=x-1, we need to consider the different cases based on the values inside the absolute value signs. Let's break it down step by step:

Case 1: (2x-3) and (4-x) are both positive

In this case, we can remove the absolute value signs without changing the equation. The equation becomes: (2x-3) - (4-x) = x-1

Simplifying the equation: 2x - 3 - 4 + x = x - 1 3x - 7 = x - 1

Now, let's solve for x: 3x - x = 1 - 7 2x = -6 x = -3

Case 2: (2x-3) is positive and (4-x) is negative

In this case, we need to change the sign of (4-x) when removing the absolute value sign. The equation becomes: (2x-3) + (x-4) = x-1

Simplifying the equation: 2x - 3 + x - 4 = x - 1 3x - 7 = x - 1

Now, let's solve for x: 3x - x = 1 - 7 2x = -6 x = -3

Case 3: (2x-3) is negative and (4-x) is positive

Similar to Case 2, we need to change the sign of (2x-3) when removing the absolute value sign. The equation becomes: -(2x-3) - (4-x) = x-1

Simplifying the equation: -2x + 3 - 4 + x = x - 1 -x - 1 = x - 1

In this case, the equation simplifies to -x - 1 = x - 1. This means that x can be any real number since the equation is always true.

Case 4: (2x-3) and (4-x) are both negative

In this case, we need to change the signs of both (2x-3) and (4-x) when removing the absolute value signs. The equation becomes: -(2x-3) + (4-x) = x-1

Simplifying the equation: -2x + 3 + 4 - x = x - 1 -3x + 7 = x - 1

Now, let's solve for x: -3x - x = 1 - 7 -4x = -6 x = 3/2

Summary of Solutions:

From the different cases, we have found two possible solutions for the equation |2x-3|-|4-x|=x-1: - x = -3 - x = 3/2

Please note that these solutions should be verified by substituting them back into the original equation to ensure they satisfy the equation.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос