
катер отправился в путь в 12 часов дня, прошел 11 км по течению реки и сделал остановку на 2 часа.
после этого он прошел еще 27 км против течения и прибыл в пункт назначения в 16 часов. найдите собственную скорость катера, если скорость течения реки 2 км/ч. помогите пожалуйста сейчас прям надо!!!!)))

Ответы на вопрос

Problem Analysis
We are given the following information: - A boat set off at 12:00 PM. - It traveled 11 km downstream (with the current) and made a 2-hour stop. - After the stop, it traveled 27 km upstream (against the current) and arrived at its destination at 4:00 PM. - The speed of the river's current is 2 km/h.We need to find the speed of the boat.
Solution
Let's assume the speed of the boat is x km/h.When the boat is traveling downstream, its effective speed is the sum of its own speed and the speed of the current. Therefore, the effective speed downstream is (x + 2) km/h.
When the boat is traveling upstream, its effective speed is the difference between its own speed and the speed of the current. Therefore, the effective speed upstream is (x - 2) km/h.
We can calculate the time taken for each leg of the journey using the formula: time = distance / speed.
Let's calculate the time taken for each leg of the journey:
- Time taken downstream: 11 km / (x + 2) km/h. - Time taken upstream: 27 km / (x - 2) km/h.
The total time taken for the journey is the sum of the time taken downstream, the 2-hour stop, and the time taken upstream. This should be equal to 4 hours:
11 / (x + 2) + 2 + 27 / (x - 2) = 4.
Now, we can solve this equation to find the value of x.
Let's solve the equation step by step:
11 / (x + 2) + 2 + 27 / (x - 2) = 4
11 / (x + 2) + 27 / (x - 2) = 2
To simplify the equation, let's multiply both sides by (x + 2)(x - 2):
11(x - 2) + 27(x + 2) = 2(x + 2)(x - 2)
Simplifying further:
11x - 22 + 27x + 54 = 2(x^2 - 4)
38x + 32 = 2x^2 - 8
Rearranging the equation:
2x^2 - 38x - 40 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± sqrt(b^2 - 4ac)) / (2a), where a = 2, b = -38, and c = -40.
Calculating the discriminant: b^2 - 4ac = (-38)^2 - 4(2)(-40) = 1444 + 320 = 1764.
Taking the square root of the discriminant: sqrt(1764) = 42.
Now, substituting the values into the quadratic formula:
x = (-(-38) ± 42) / (2(2))
Simplifying further:
x = (38 ± 42) / 4
We have two possible solutions:
1. x = (38 + 42) / 4 = 80 / 4 = 20 2. x = (38 - 42) / 4 = -4 / 4 = -1
Since the speed of the boat cannot be negative, the speed of the boat is 20 km/h.
Therefore, the speed of the boat is 20 km/h.
Answer
The speed of the boat is 20 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili