
Вопрос задан 16.06.2020 в 02:11.
Предмет Алгебра.
Спрашивает Куприянова Лиза.
Напиши уравнение окружности, которая проходит через точку 5 на оси Ox и через точку 7 на оси Oy ,
если известно, что центр находится на оси Oy . (Рассчитай в дробях и дроби запиши не сокращёнными)

Ответы на вопрос

Отвечает Демедюк Андрей.
Рассмотрим треуг. boa. угол а = 90 oa = 7-R, ab=5, ob=R Тогда по теореме пифагора R^{2} =(7-R)^{2}+25 14R=74 R=74/14; значит ao = 7-74/14 = 12/7; а значит уравнение будет иметь вид x^{2} +(y-12/7)^2= (74/14)^2 .




Отвечает Белаш Павел.
Пусть точка C(0, m) - центр окружности (так как по условию центр лежит на оси OY, то первая координата равна 0)
Известно, что расстояние от центра до любой точки на окружности является константой и равно радиусу R окружности
Наша окружность проходит через точку 7 на оси OY, значит R = 7 - m
Также окружность проходит через точку 5 на оси OX, значит по теореме Пифагора
Приравняем это и получим уравнение:
Координата центра окружности -
Радиус окружности:
Уравнение окружности выглядит следующим:
Подставим наши числа:
Ответ:



Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili