Вопрос задан 16.06.2020 в 02:11. Предмет Алгебра. Спрашивает Куприянова Лиза.

Напиши уравнение окружности, которая проходит через точку 5 на оси Ox и через точку 7 на оси Oy ,

если известно, что центр находится на оси Oy . (Рассчитай в дробях и дроби запиши не сокращёнными)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Демедюк Андрей.

Рассмотрим треуг. boa. угол а = 90 oa = 7-R, ab=5, ob=R Тогда по теореме пифагора R^{2} =(7-R)^{2}+25 14R=74 R=74/14; значит ao = 7-74/14 = 12/7; а значит уравнение будет иметь вид x^{2} +(y-12/7)^2= (74/14)^2 .


0 0
Отвечает Белаш Павел.

Пусть точка C(0, m) - центр окружности (так как по условию центр лежит на оси OY, то первая координата равна 0)

Известно, что расстояние от центра до любой точки на окружности является константой и равно радиусу R окружности

Наша окружность проходит через точку 7 на оси OY, значит R = 7 - m

Также окружность проходит через точку 5 на оси OX, значит по теореме Пифагора R = \sqrt{m^2+25}

Приравняем это и получим уравнение:

></p><p>Возвёдём в квадрат и решим уравнение:</p><p><img src=

Координата центра окружности  -   C(0,\;\frac{12}{7})

Радиус окружности: R = 7 -m = 7 - \frac{12}{7} = \frac{49-12}{7} = \frac{37}{7}

Уравнение окружности выглядит следующим:

(x - x_c)^2 + (y - y_c)^2 = R^2

Подставим наши числа:

(x - 0)^2 + (y - \frac{12}{7})^2 = (\frac{37}{7})^2 \\\\x^2 + (y - \frac{12}{7})^2 = \frac{1369}{49}

Ответ: x^2 + (y - \frac{12}{7})^2 = \frac{1369}{49}


0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос