Вопрос задан 17.05.2020 в 16:58. Предмет Алгебра. Спрашивает Ходжаев Азик.

Найдите значение параметра w, при котором сумма квадратов различных корней уравнения x²+2wx+3=0

меньше 30.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Артюхова Алена.

D=(2w)^2-4\cdot 3=4w^2-12>0~~\Rightarrow~~ w^2>3\\ \\ w\in (-\infty;-\sqrt{3})\cup(\sqrt{3};+\infty)

По теореме Виета:

x_1+x_2=-2w\\ x_1x_2=3

x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=(-2w)^2-3\cdot 2=4w^2-6

Из условия x_1^2+x_2^2<30, т.е.

4w^2-6<30~~~\Rightarrow~~~ w^2<9~~~\Rightarrow~~~ -3<w<3

С учетом существования корней, ответ: w \in (-3;-\sqrt{3})\cyp(\sqrt{3};3).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос