Вопрос задан 10.04.2020 в 00:57. Предмет Алгебра. Спрашивает Фризоргер Данил.

Может ли из 101 идущих подряд натуральных чисел быть ровно одно делящееся: а)на 50 б)на 51 в)на 101

г)на 10001 ___________________________ Объясните пожалуйста,как это делать?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Pekarskaya Ekaterina.
Свойства сравнений по модулю.
a = b (mod m) означает что a давёт в остатке b при делении на m. Одно из свойств:
a + k*m = b (mod m), где k - целое число.
Рассмотрим отрезок 1...101 из след. свойства видно, что любой другой отрезок можно свести к нему.
50 = 0 (mod 50), воспользуемся свойством:
50 + 50 = 0 (mod 50), 100 = 0 (mod 50). Если прибавим ещё 50, то выйдем за этот промежуток.
Числа два: 50, 100. 51 = 0 (mod 51), прибавим 102 = 0 (mod 51), однако 102>101, значит оно нам не походит.
Получается число: 51.
Аналогично с 101.
0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос