
Вопрос задан 06.02.2020 в 14:27.
Предмет Алгебра.
Спрашивает Шурасев Никита.
Треугольники ABC и FMN равны. BD и MH биссектрисы углов B и M


Ответы на вопрос

Отвечает Варачёва Лана.
ΔABC =ΔFMN⇒BC=MN ∠ C=∠N
∠B=∠M а так как BD b MH биссектрисы то ∠DBC=∠HMN⇔ΔDBC=ΔHMN по стороне и двум углам



Отвечает Кузнецов Михаил.
Стороны DC=MN, угол C = углу N, угол DBC = углу HMN (первоначальные треугольники равны и проведены биссектрисы).
и по второму признаку равенства треугольников треугольники DBC и равны HMN.
и по второму признаку равенства треугольников треугольники DBC и равны HMN.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili