Вопрос задан 29.01.2020 в 14:53. Предмет Алгебра. Спрашивает Ким Наина.

Помогите пожалуйста,срочно надо решить дифференциальное уравнение y'+x^2y=x^2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стариков Тима.
Классификация: Дифференциальное уравнение первого порядка, разрешенной относительно производной, линейное неоднородное.
Применим метод Лагранжа или так называемый "метод вариации произвольных постоянных).
1) Найдем сначала общее решение соответствующего однородного уравнения:
y'+x^2y=0 - это уравнение ни что иное как дифференциальное уравнение с разделяющимися переменными.
\displaystyle  \frac{dy}{y} =-x^2dx~~~\Rightarrow~~~~~ \int\frac{dy}{y} =-\int x^2dx;~~~\Rightarrow~~~~ y=Ce^{-x^3/3}

2) Примем нашу константу за функцию, то есть, C=C(x) получим y=C(x)e^{-x^3/3}

И тогда, дифференцируя по правилу произведения, получим 
y'=C'(x)e^{-x^3/3}-x^2C(x)e^{-x^3/3}

Подставим теперь все эти данных в исходное дифференциальное уравнение
C'(x)e^{-x^3/3}-x^2C(x)e^{-x^3/3}+x^2C(x)e^{-x^3/3}=x^2\\ \\C'(x)e^{-x^3/3}=x^2~~~\Rightarrow~~~ C(x)=\displaystyle \int x^2e^{x^3/3}dx=\int e^{x^3/3}d\bigg( \frac{x^3}{3}\bigg)=e^{x^3/3}+C_1

И тогда общее решение неоднородного уравнения:
           y=e^{-x^3/3}\cdot(e^{x^3/3}+C_1)=1+C_1e^{-x^3/3}
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос