
Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь
путь.Второй проехал первую половину пути со скоростью, меньшей скорости первого на 16 км/ч, а вторую половину пути - со скоростью 96 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 60 км/ч.

Ответы на вопрос

t1 = S/x t2 = (S/2)/(x-16) + (S/2)/96
t1=t2
S/x= (S/2)/(x-16) + (S/2)/96 S/x= S/(2x-32) + S/192
сократим S
1/x = 1/(2x-32) + 1/192
(2x-32)192 = 192x +x(2x-32)
384x-6144=192x+2x^2-32x
2x^2-224x+6144=0
(x-48)(x-64)=0
x=48x=64
По условию 64>60 ответ 64км/час



Problem Analysis
We are given that two cars, A and B, simultaneously started from point A and traveled to point B. The first car traveled the entire distance at a constant speed. The second car traveled the first half of the distance at a speed 16 km/h slower than the first car and the second half of the distance at a speed of 96 km/h. We need to find the speed of the first car, given that it is greater than 60 km/h.Solution
Let's assume the total distance from A to B is d km.The first car traveled the entire distance at a constant speed, which we'll call v km/h.
The second car traveled the first half of the distance at a speed 16 km/h slower than the first car, so its speed for the first half of the distance is v - 16 km/h.
The second car traveled the second half of the distance at a speed of 96 km/h.
To find the time taken by each car, we can use the formula:
time = distance / speed
For the first car, the time taken is:
time1 = d / v
For the second car, the time taken for the first half of the distance is:
time2_1 = (d / 2) / (v - 16)
And the time taken for the second half of the distance is:
time2_2 = (d / 2) / 96
Since both cars arrived at point B simultaneously, the total time taken by each car should be the same:
time1 = time2_1 + time2_2
Substituting the values, we get:
d / v = (d / 2) / (v - 16) + (d / 2) / 96
Simplifying the equation, we get:
d / v = d / (2(v - 16)) + d / (2 * 96)
Multiplying through by the common denominator, we get:
96d = d(v - 16) + v(d / 2)
Simplifying further, we get:
96d = dv - 16d + vd / 2
Combining like terms, we get:
96d = dv + vd / 2 - 16d
Multiplying through by 2 to eliminate the fraction, we get:
192d = 2dv + vd - 32d
Rearranging the terms, we get:
192d - 32d = 2dv + vd
Simplifying further, we get:
160d = 3dv
Dividing both sides by 3d, we get:
160 / 3 = v
Therefore, the speed of the first car, v, is equal to 160 / 3 km/h.
Answer
The speed of the first car is 160 / 3 km/h, which is approximately 53.33 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili