
Для функции f(x)=-2cosx найдите первообразных, график которой проходит через точку А(п/6;3)
Помогите пожалуйста!!!!!

Ответы на вопрос




Finding the Antiderivative of f(x) = -2cos(x)
To find the antiderivative of the function f(x) = -2cos(x), we can use the basic integration rules for trigonometric functions. The antiderivative of cos(x) is sin(x), and since we have a coefficient of -2 in front of cos(x), the antiderivative of -2cos(x) is -2sin(x).
Therefore, the antiderivative of f(x) = -2cos(x) is F(x) = -2sin(x) + C, where C is the constant of integration.
Finding the Graph Passing Through Point A(pi/6, 3)
To find the graph of the antiderivative F(x) = -2sin(x) + C that passes through the point A(pi/6, 3), we can substitute the x-coordinate and y-coordinate of point A into the equation and solve for the constant of integration C.
Given that the x-coordinate is pi/6 and the y-coordinate is 3, we have the following equation:
3 = -2sin(pi/6) + C
Using the trigonometric identity sin(pi/6) = 1/2, we can simplify the equation:
3 = -2 * (1/2) + C 3 = -1 + C
Solving for C, we find:
C = 4
Therefore, the equation of the graph passing through point A(pi/6, 3) is F(x) = -2sin(x) + 4.
Graph of the Antiderivative Passing Through Point A(pi/6, 3)
To visualize the graph of the antiderivative passing through point A(pi/6, 3), we can plot the function F(x) = -2sin(x) + 4 on a graph.
Here is a graph of the function F(x) = -2sin(x) + 4:

Please note that the graph is a rough representation and may not be to scale. It is always recommended to use graphing software or a graphing calculator for accurate and precise graphs.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili