Вопрос задан 14.01.2020 в 03:20. Предмет Алгебра. Спрашивает Борискина Диана.

Корені х1 і х2 рівняння х2 - 9х + с = 0 задовольняють умову х1 - х2 = 13 знайдіть корені рівняння і

значення с
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мамчиц Илона.

Ответ:

(-2;11) С=-22

Объяснение: С = х1*х2 а х1+х2= -В у нас В= -9

значит можно составить систему

х1 + х2 = 9

х1 - х2 = 13

решим методом сложения

2х1=22

х1=11

х2=9-11

х2= -2

значит С = -2*11 = -22

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цього завдання використаємо методи квадратного рівняння.

Дано рівняння: x^2 - 9x + с = 0

За формулою дискримінанту D = b^2 - 4ac, де a = 1, b = -9, c = с, ми можемо знайти значення дискримінанту.

D = (-9)^2 - 4 * 1 * с = 81 - 4с

За умовою задачі, корені рівняння мають задовольняти умову x1 - x2 = 13.

За формулою коренів квадратного рівняння, ми можемо знайти значення коренів:

x1 = (-b + √D) / (2a) = (9 + √(81 - 4с)) / 2 x2 = (-b - √D) / (2a) = (9 - √(81 - 4с)) / 2

Тому, корені рівняння будуть x1 = (9 + √(81 - 4с)) / 2 та x2 = (9 - √(81 - 4с)) / 2.

Залишилося знайти значення с. За умовою задачі, x1 - x2 = 13. Підставимо знайдені корені в цю умову:

(9 + √(81 - 4с)) / 2 - (9 - √(81 - 4с)) / 2 = 13

Спростимо це рівняння:

√(81 - 4с) - (-√(81 - 4с)) = 26

2√(81 - 4с) = 26

√(81 - 4с) = 13

Піднесемо обидві частини рівняння до квадрату:

81 - 4с = 169

-4с = 88

с = -22

Отже, корені рівняння x^2 - 9x - 22 = 0 будуть x1 = (9 + √(81 - 4(-22))) / 2 та x2 = (9 - √(81 - 4(-22))) / 2, а значення с = -22.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос