Вопрос задан 28.05.2018 в 22:20. Предмет Алгебра. Спрашивает Тамашевич Дана.

Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма её первых пяти членов 31.

Найдите первый член прогрессии.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тастан Амина.

Пусть x-первый член прогрессии,
q-знаменатель прогрессии.
S1-сумма убывайщей прогрессии,
S2-сумма первых 5 членов.
S1=x/(1-q)=32
S2=x(1-q^5)/(1-q)=31
Получаем
(1-q)=x/32=x(1-q^5)/31, отсюда
(1-q^5)=31/32, q^5=1-31/32=1/32,
q=1/2
x/(1-1/2)=32, 2x=32, x=16

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос