
Вопрос задан 24.05.2018 в 03:06.
Предмет Алгебра.
Спрашивает Мамаев Максим.
Решите уравнение: 2 sin2x + 3cos²x·ctgx = (1 - 2cosx)ctgx. Найдите корни, принадлежащие промежутку
(-π;π/2]

Ответы на вопрос

Отвечает Дьячков Дима.
Запишем уравнение так 4*sin^2(x)*cos(x)+ 3*cos^2(x)·ctgx = (1 - 2cosx)ctgxУбеждаемся, что один из корней при cos(x) = 0.Далее, умножаем обе части уравнения на tg(x). Получаем: 2*sin(2*x)*tg(x) +3*cos^2(x) = 1 – 2*cos(x) 4*sin^2(x) +3*cos^2(x) = cos^2(x) – 2*cos(x) – 3 = 0 Корень cos(x) = 3 – не подходит.Остаётся cos(x) = - 1Итак х = pi/2 +pi*n и х = pi+2*pi*n.Но при cos(x) = -1 sin(x) = 0 – это не входит в область определения уравнения. Таким образом, окончательный ответ: в данный промежуток входят точки: -pi/2 и pi/2 – это решение. Что непонятно, спрашивай…


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili