
Вопрос задан 20.05.2018 в 13:13.
Предмет Алгебра.
Спрашивает Климский Саша.
В шахматном турнире, проходившем по круговой системе (все участники играют между собой ровно один
раз), участвовало игроков n>=16. Если шахматная партия заканчивалась победой одного из игроков, то победитель получал 1 очко, а его соперник - 0 очков. Если партия между игроками заканчивалась вничью, то каждый игрок получал 0,5 очка. Известно, что по итогам турнира число участников, набравших не более пяти очков, равно 11. Сколько участников набрали по 6,5 очка?

Ответы на вопрос

Отвечает Магизов Артур.
Рассмотрим все партии между игроками, набравшими не более 5 очков. Партий было 11 * 10 / 2 = 55, в каждой партии разыгрывалось одно очко, поэтому общее число очков, разыгранное в этих партиях, равно 55.
По условию, эти 11 игроков набрали не более 5 очков, поэтому они суммарно набрали не более 55 очков. Значит, эти игроки не набрали ни одного очка в партиях с более успешными игроками, тогда более успешные игроки выиграли у каждого из этих 11 игроков, и у них не меньше 11 баллов. Тогда от 5,5 до 10,5 баллов набрать не мог никто.
Ответ. Таких игроков не было.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili