
Решите систему:


Ответы на вопрос




Solving the System of Equations
To solve the given system of equations, we will use the information provided in the search results. The system of equations is as follows:
Equation 1: 2x - y = 7 Equation 2: x^2 - xy = 12
To solve this system, we can use substitution or elimination method. Let's use the substitution method.
From Equation 1, we can express y in terms of x: y = 2x - 7
Now, substitute this value of y into Equation 2: x^2 - x(2x - 7) = 12 x^2 - 2x^2 + 7x = 12 -x^2 + 7x = 12 x^2 - 7x + 12 = 0
Now, we can solve this quadratic equation to find the values of x. Factoring the equation, we have: (x - 3)(x - 4) = 0
Setting each factor equal to zero, we get two possible values for x: x - 3 = 0 --> x = 3 x - 4 = 0 --> x = 4
So, we have two potential solutions for x: x = 3 and x = 4.
Now, substitute these values of x back into Equation 1 to find the corresponding values of y.
For x = 3: y = 2(3) - 7 y = 6 - 7 y = -1
For x = 4: y = 2(4) - 7 y = 8 - 7 y = 1
Therefore, the solutions to the system of equations are: (x, y) = (3, -1) and (4, 1).
Please let me know if there is anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili