Вопрос задан 07.05.2019 в 17:11. Предмет Алгебра. Спрашивает Хумаев Алик.

Как решить эти примеры(c-4)(d-3), (x+y)(x+1), (a+b)(a+b), (a+2b)(2a+b)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Трофимов Сергей.
(x+y)(x+1)=x^+x+xy+y
(a+b)(a+b)=(a+b)^ или a^+2ab+b^
(a+2b)(2a+b)=2a^+ab+4ab+2b^=2a^+5ab+2b^

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение примеров:

1. (c-4)(d-3)

Для решения данного примера, нужно применить правило раскрытия скобок, которое гласит: умножение каждого элемента первой скобки на каждый элемент второй скобки.

Раскроем скобки: (c-4)(d-3) = c(d-3) - 4(d-3)

Продолжим раскрытие скобок: c(d-3) - 4(d-3) = cd - 3c - 4d + 12

Таким образом, решение примера (c-4)(d-3) равно cd - 3c - 4d + 12.

2. (x+y)(x+1)

Раскроем скобки: (x+y)(x+1) = x(x+1) + y(x+1)

Продолжим раскрытие скобок: x(x+1) + y(x+1) = x^2 + x + xy + y

Таким образом, решение примера (x+y)(x+1) равно x^2 + x + xy + y.

3. (a+b)(a+b)

Раскроем скобки: (a+b)(a+b) = a(a+b) + b(a+b)

Продолжим раскрытие скобок: a(a+b) + b(a+b) = a^2 + ab + ba + b^2

Учитывая, что умножение чисел коммутативно (ab = ba), получим: a^2 + ab + ba + b^2 = a^2 + 2ab + b^2

Таким образом, решение примера (a+b)(a+b) равно a^2 + 2ab + b^2.

4. (a+2b)(2a+b)

Раскроем скобки: (a+2b)(2a+b) = a(2a+b) + 2b(2a+b)

Продолжим раскрытие скобок: a(2a+b) + 2b(2a+b) = 2a^2 + ab + 4ab + 2b^2

Учитывая, что умножение чисел коммутативно (ab = ba), получим: 2a^2 + ab + 4ab + 2b^2 = 2a^2 + 5ab + 2b^2

Таким образом, решение примера (a+2b)(2a+b) равно 2a^2 + 5ab + 2b^2.

Примечание: При решении примеров использовано правило раскрытия скобок.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос