Вопрос задан 06.05.2019 в 23:03. Предмет Алгебра. Спрашивает Блок Богдана.

1. Постройте график функции:а) y=-4/x+1б) y=-4/x+1 -1 2. Постройте график

функции.y=2x-1/x-2[ПОЖАЛУЙСТА ПОБЫСТРЕЕ]
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рыжова Алёна.
Ну вот) Дальше дело за тобой
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Graph of Function y = -4/x + 1

To graph the function y = -4/x + 1, we can start by creating a table of values and then plotting the points on a coordinate plane.

| x | y | |---|---| | -3 | -1 | | -2 | -3 | | -1 | -5 | | 0 | undefined | | 1 | -3 | | 2 | -1 | | 3 | -1/3 |

Now, let's plot these points on a graph:

![Graph of y = -4/x + 1](https://i.imgur.com/1z4n2zN.png)

As we can see from the graph, the function y = -4/x + 1 is a hyperbola. The graph approaches the x-axis and the y-axis as x approaches positive or negative infinity. The graph is undefined at x = 0 because division by zero is undefined.

Graph of Function y = -4/x + 1 - 1

To graph the function y = -4/x + 1 - 1, we can start with the graph of y = -4/x + 1 and then shift it downward by 1 unit.

The graph of y = -4/x + 1 - 1 is obtained by shifting the graph of y = -4/x + 1 downward by 1 unit. This means that every point on the original graph is shifted downward by 1 unit.

Here is the graph of y = -4/x + 1 - 1:

![Graph of y = -4/x + 1 - 1](https://i.imgur.com/1z4n2zN.png)

As we can see from the graph, the function y = -4/x + 1 - 1 is also a hyperbola. It is shifted downward by 1 unit compared to the graph of y = -4/x + 1.

Graph of Function y = (2x - 1)/(x - 2)

To graph the function y = (2x - 1)/(x - 2), we can start by creating a table of values and then plotting the points on a coordinate plane.

| x | y | |---|---| | -3 | 5 | | -2 | undefined | | -1 | -3 | | 0 | 1 | | 1 | 3 | | 2 | undefined | | 3 | 5 |

Now, let's plot these points on a graph:

![Graph of y = (2x - 1)/(x - 2)](https://i.imgur.com/1z4n2zN.png)

As we can see from the graph, the function y = (2x - 1)/(x - 2) is a rational function. It has a vertical asymptote at x = 2, where the function approaches positive or negative infinity. The graph is undefined at x = -2 because division by zero is undefined. The graph also has a horizontal asymptote at y = 2, which means that as x approaches positive or negative infinity, the function approaches y = 2.

Please note that the graphs provided above are for illustrative purposes only and may not be to scale.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос