
помогите с решением. не пойму что делаю не так. может с производной ошибаюсь...Найти наибольшее
значение функции:1. y=9x-8sinx+7 на отрезке {-п/2;0}2. y=4tgx-4x+п-6 на отрезке { -п/4;п/4}помогите пожалуйста...

Ответы на вопрос

применены формулы производной от синуса, тангенса и линейнгой функции, а также связь поведения функции со знаком производной



Finding the Maximum Value of a Function
To find the maximum value of a function, we need to find the critical points of the function and determine whether they correspond to a maximum or minimum. Critical points occur where the derivative of the function is equal to zero or does not exist.
Let's solve the two problems you provided step by step:
1. Problem 1: Find the maximum value of the function y = 9x - 8sin(x) + 7 on the interval [-π/2, 0].
To find the critical points, we need to find where the derivative of the function is equal to zero or does not exist. Let's find the derivative of the function first:
``` y' = 9 - 8cos(x) ```
Now, let's set the derivative equal to zero and solve for x:
``` 9 - 8cos(x) = 0 ```
Solving this equation will give us the critical points. Let's solve it:
``` 8cos(x) = 9 cos(x) = 9/8 ```
Taking the inverse cosine of both sides, we get:
``` x = arccos(9/8) ```
However, we need to find the critical points within the given interval [-π/2, 0]. The value of arccos(9/8) is outside this interval, so we can ignore it.
Next, we need to check the endpoints of the interval. Let's evaluate the function at x = -π/2 and x = 0:
``` y(-π/2) = 9(-π/2) - 8sin(-π/2) + 7 = -9π/2 + 8 + 7 = -9π/2 + 15 y(0) = 9(0) - 8sin(0) + 7 = 0 - 0 + 7 = 7 ```
Now, we compare the values of the function at the critical points and endpoints to determine the maximum value:
- y(-π/2) = -9π/2 + 15 - y(0) = 7
Comparing these values, we can see that y(0) = 7 is the maximum value of the function on the interval [-π/2, 0].
2. Problem 2: Find the maximum value of the function y = 4tan(x) - 4x + π - 6 on the interval [-π/4, π/4].
Similarly, let's find the derivative of the function:
``` y' = 4sec^2(x) - 4 ```
Setting the derivative equal to zero and solving for x:
``` 4sec^2(x) - 4 = 0 sec^2(x) = 1 ```
Taking the square root of both sides, we get:
``` sec(x) = ±1 ```
However, we need to find the critical points within the given interval [-π/4, π/4]. The values of x that satisfy sec(x) = ±1 are x = -π/4 and x = π/4. Let's evaluate the function at these critical points:
``` y(-π/4) = 4tan(-π/4) - 4(-π/4) + π - 6 = -4 + π + π - 6 = 2π - 10 y(π/4) = 4tan(π/4) - 4(π/4) + π - 6 = 4 + π - π - 6 = -2 ```
Now, we compare the values of the function at the critical points and endpoints to determine the maximum value:
- y(-π/4) = 2π - 10 - y(π/4) = -2
Comparing these values, we can see that y(-π/4) = 2π - 10 is the maximum value of the function on the interval [-π/4, π/4].
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili