Вопрос задан 06.05.2019 в 01:35. Предмет Алгебра. Спрашивает Гарьковец Мирослав.

Помогите пж срочно. 9 класс 1) В арифметической прогрессии а7+а1=4, а3^2+а7^2=122. Найти а1 и d.

2)В арифметической прогрессии сумма членов со 2 по 5 включительно равна 34, а разность 2 и 3 равна 28. Найти а1 и d.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вампир Дашка.
1
{a7+a1=4⇒a1+6d+a1=4⇒2a1+6d=4⇒a1+3d=2⇒a1=2-3d
{a3²+a7²=122⇒(a1+2d)²+(a1+6d)²=122⇒(2-d)²+(2+3d)²=122
4-4d+d²+4+12d+9d²-122=0
10d²+8d-114=0
5d²+4d-57=0
D=16+1140=1156
d1=(-4-34)/10=-3,8⇒a1=2-3*(-3,8)=2+11,4=13,4
d2=(-4+34)/10=3⇒a1=2-3*3=2-9=-7
2
{a2+a3+a4+a5=34⇒4a1+10d=34⇒2a1+5d=17
{a2-a3=28⇒a1+d-a1-2d=28⇒-d=28⇒d=-28
2a1-140=17
2a1=157
a1=78,5
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem 1: Finding a1 and d in an arithmetic progression

To find the values of a1 and d in an arithmetic progression, we can use the given information.

Given: - a7 - a1 = 4 - a3^2 + a7^2 = 122

Let's solve this step by step.

Step 1: Finding the common difference (d) We know that the difference between any two consecutive terms in an arithmetic progression is constant. Let's assume the common difference is d.

Since a7 - a1 = 4, we can write it as: a1 + 6d - a1 = 4 6d = 4 d = 4/6 d = 2/3

So, the common difference (d) is 2/3.

Step 2: Finding the first term (a1) To find a1, we need to substitute the value of d into the equation a7 - a1 = 4.

a7 - a1 = 4 (a1 + 6d) - a1 = 4 6d = 4 6(2/3) = 4 4 = 4

Since the equation is satisfied, we can conclude that the given information is consistent.

Therefore, the first term (a1) is not uniquely determined by the given information. It can take any value.

The common difference (d) is 2/3.

Problem 2: Finding a1 and d in an arithmetic progression

To find the values of a1 and d in an arithmetic progression, we can use the given information.

Given: - The sum of terms from the 2nd term to the 5th term (inclusive) is 34. - The difference between the 2nd term and the 3rd term is 28.

Let's solve this step by step.

Step 1: Finding the common difference (d) We know that the difference between any two consecutive terms in an arithmetic progression is constant. Let's assume the common difference is d.

Since the difference between the 2nd term and the 3rd term is 28, we can write it as: a2 - a3 = 28 (a1 + d) - (a1 + 2d) = 28 -d = 28 d = -28

So, the common difference (d) is -28.

Step 2: Finding the first term (a1) To find a1, we need to use the sum of terms from the 2nd term to the 5th term.

The sum of terms from the 2nd term to the 5th term (inclusive) is 34. We can write it as: (a1 + d) + (a1 + 2d) + (a1 + 3d) + (a1 + 4d) = 34

Simplifying the equation: 4a1 + 10d = 34 4a1 + 10(-28) = 34 4a1 - 280 = 34 4a1 = 314 a1 = 314/4 a1 = 78.5

So, the first term (a1) is 78.5.

The common difference (d) is -28.

Please note that in an arithmetic progression, the terms are usually integers. However, in this case, the first term (a1) is a decimal number.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос