Вопрос задан 05.05.2019 в 03:43. Предмет Алгебра. Спрашивает Ханский Нуржан.

Разложи на множители (t+10)^3−0,027

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макаров Миша.
Формула разности кубов.
а^3-в^3=(а-в)(а^2+ав+в^2)
представим, что число а=t+10
в=0,3 (т.к.0,3^3=0,027 получается)

(t+10)^3−0,027=(t+10-0,3)((t+10)^2+0,3(t+10)+0,09)=(t+9,7)(t^2+20t+100+0,3t+3+0,09)=(t+9,7)(t^2+20,3t+103,09)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы разложить выражение (t+10)^3−0,027 на множители, мы можем использовать формулу куба суммы двух слагаемых.

Формула куба суммы двух слагаемых:

(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3

В данном случае, a = t и b = 10. Подставляя значения в формулу, получаем:

(t+10)^3 = t^3 + 3t^2*10 + 3t*10^2 + 10^3 = t^3 + 30t^2 + 300t + 1000

Теперь мы можем переписать исходное выражение:

(t+10)^3−0,027 = t^3 + 30t^2 + 300t + 1000 - 0,027

Таким образом, разложение на множители для данного выражения будет:

(t+10)^3−0,027 = t^3 + 30t^2 + 300t + 999,973

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос