
Точка движется прямолинейно по закону x(t)=2t x^3 +3t+1 Найдите её ускорение в момент времени t=3
(координата x(t) измеряется в сантиметрах времени t- в сек.)

Ответы на вопрос

x'(3)= 54+3=57 см/с^2



Для нахождения ускорения точки в момент времени t = 3, мы должны найти вторую производную функции x(t) по времени.
Первая производная x'(t) функции x(t) равна производной от каждого слагаемого в данной функции:
x'(t) = 2 + 3x^2(t) + 3
Теперь найдем вторую производную, взяв производную от x'(t):
x''(t) = d/dt (2 + 3x^2(t) + 3)
x''(t) = 6x(t)x'(t)
Подставим значение x(t) в выражение для x'(t):
x(t) = 2t + x^3 + 3t + 1
x(t) = 5t + x^3 + 1
Теперь найдем производную x'(t) и подставим значение x(t):
x'(t) = 5 + 3x^2(t)
x'(t) = 5 + 3(5t + x^3 + 1)^2
Теперь найдем вторую производную, подставив значение x'(t):
x''(t) = 6x(t)x'(t)
x''(t) = 6(5t + x^3 + 1)(5 + 3(5t + x^3 + 1)^2)
После подстановки получаем уравнение для ускорения точки в момент времени t = 3. Однако, данное уравнение является сложным и требует дальнейшего упрощения.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili