
При каких значениях параметра р уравнение х^2 - 2(р-1)х +4р^2=0 имеет не более одного корня??
Помогите пожалуйста!!!

Ответы на вопрос

Если дискриминант D≤0 , то уравнение имеет не более одного решения.
D = 4(p-1)² - 16р² = 4p² - 8p + 4 - 16р² = -12р² - 8p + 4
-12р² - 8p + 4 ≤ 0
или
-3р² - 2p + 1 ≤ 0 (А)
Найдём корни уравнения
-3р² - 2p + 1 = 0
D = 4+12 = 16
p₁ = (2 + 4):(-6) = -1
p₂ = (2 - 4):(-6) = 1/3
Решение неравенства (А) таково: х∈(-∞, -1] и [1/3, +∞)
Это и будет ответом.



Finding the Values of Parameter p for the Equation to Have at Most One Root
To determine the values of the parameter p for which the equation x^2 - 2(p-1)x + 4p^2 = 0 has at most one root, we can use the discriminant of the quadratic equation.
The discriminant (D) of a quadratic equation ax^2 + bx + c = 0 is given by the formula D = b^2 - 4ac. The number of roots of the equation depends on the value of the discriminant:
1. If D > 0, the equation has two distinct real roots. 2. If D = 0, the equation has one real root (a double root). 3. If D < 0, the equation has no real roots.
In our case, the equation is x^2 - 2(p-1)x + 4p^2 = 0. Comparing this with the general form ax^2 + bx + c = 0, we have a = 1, b = -2(p-1), and c = 4p^2.
To find the values of p for which the equation has at most one root, we need to find the values of p for which the discriminant D is either equal to zero or less than zero.
Let's calculate the discriminant and solve for p:
D = (-2(p-1))^2 - 4(1)(4p^2) D = 4(p^2 - 2p + 1) - 16p^2 D = 4p^2 - 8p + 4 - 16p^2 D = -12p^2 - 8p + 4
To find the values of p for which the equation has at most one root, we need to solve the inequality D ≤ 0:
-12p^2 - 8p + 4 ≤ 0
Now, let's solve this inequality to find the values of p:
-12p^2 - 8p + 4 ≤ 0 3p^2 + 2p - 1 ≥ 0
To solve this quadratic inequality, we can factor it or use the quadratic formula. However, since the question asks for a detailed response, we will use the quadratic formula to find the roots of the equation 3p^2 + 2p - 1 = 0:
p = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 3, b = 2, and c = -1. Substituting these values into the quadratic formula, we get:
p = (-2 ± √(2^2 - 4(3)(-1))) / (2(3)) p = (-2 ± √(4 + 12)) / 6 p = (-2 ± √16) / 6 p = (-2 ± 4) / 6
Simplifying further, we have:
p = (2 - 4) / 6 or p = (2 + 4) / 6 p = -2/6 or p = 6/6 p = -1/3 or p = 1
Therefore, the values of p for which the equation x^2 - 2(p-1)x + 4p^2 = 0 has at most one root are p = -1/3 and p = 1.
Note: Please double-check the calculations as they were done manually.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili