Вопрос задан 02.05.2019 в 21:01. Предмет Алгебра. Спрашивает Тихий Илья.

Из двух городов одновременно навстречу друг другу отправились два вело- сипедиста. Проехав

некоторую часть пути, первый велосипедист сделал остановку на 40 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 92 км, скорость первого велосипедиста равна 30 км/ч, скорость второго − 12 км/ч. Опреде- лите расстояние от города, из которого выехал второй велосипедист, до места встречи.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Буханевич Полина.
Решение -------------------->
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two cyclists traveling towards each other from two different cities. The first cyclist stops for 40 minutes and then continues until they meet the second cyclist. We need to determine the distance from the city where the second cyclist started to the meeting point.

Solution

To solve this problem, we can use the formula: distance = speed × time.

Let's calculate the time it takes for the first cyclist to reach the meeting point. We know that the distance between the cities is 92 km and the speed of the first cyclist is 30 km/h. Using the formula, we can calculate the time as follows:

time = distance / speed = 92 km / 30 km/h

Now, let's calculate the time the first cyclist spent traveling before the stop. We know that the first cyclist stopped for 40 minutes, which is equal to 40/60 = 2/3 hours.

To find the distance from the city where the second cyclist started to the meeting point, we need to subtract the distance traveled by the first cyclist before the stop from the total distance between the cities. Let's calculate it:

distance from the second cyclist's city to the meeting point = total distance - distance traveled by the first cyclist before the stop

Now, let's calculate the distance traveled by the first cyclist before the stop:

distance traveled by the first cyclist before the stop = speed × time before the stop = 30 km/h × (time - 2/3 hours)

Finally, we can calculate the distance from the second cyclist's city to the meeting point:

distance from the second cyclist's city to the meeting point = 92 km - (30 km/h × (time - 2/3 hours))

Let's calculate the values and find the answer.

Calculation

Using the given values: - Distance between the cities: 92 km - Speed of the first cyclist: 30 km/h - Speed of the second cyclist: 12 km/h - Time before the stop: 2/3 hours (40 minutes)

We can calculate the time it takes for the first cyclist to reach the meeting point:

time = distance / speed = 92 km / 30 km/h

Now, let's calculate the distance traveled by the first cyclist before the stop:

distance traveled by the first cyclist before the stop = speed × time before the stop = 30 km/h × (time - 2/3 hours)

Finally, we can calculate the distance from the second cyclist's city to the meeting point:

distance from the second cyclist's city to the meeting point = 92 km - (30 km/h × (time - 2/3 hours))

Answer

The distance from the city where the second cyclist started to the meeting point is [[92 - (30 × (92/30 - 2/3))]] km.

Please note that the calculation is based on the given information and assumptions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос