
1. Представьте выражение (6а+9)^2 - a^4 в виде произведения трёх многочленов.2. Решите уравнение
36-(4-х)^2=0

Ответы на вопрос

2)(4-x)^2=36
4-x=6 ;x=-2
x-4=6; x=10



36-(4-х)^2=0
36-16+8x-x^2=0
x^2-8x-20=0
по теореме виета
10 -2



1. Для представления выражения (6а + 9)^2 - a^4 в виде произведения трех многочленов, мы можем использовать формулу квадрата суммы двух слагаемых:
(6а + 9)^2 = (6а)^2 + 2 * 6а * 9 + 9^2 = 36а^2 + 108а + 81.
Теперь мы можем записать данное выражение в виде произведения трех многочленов:
(6а + 9)^2 - a^4 = (6а + 9)^2 - (а^2)^2 = (6а + 9 + а^2)(6а + 9 - а^2).
2. Решим уравнение 36 - (4 - х)^2 = 0:
Раскроем квадрат:
36 - (4 - х)^2 = 0 36 - (4 - х)(4 - х) = 0 36 - (16 - 8х + х^2) = 0 36 - 16 + 8х - х^2 = 0 -х^2 + 8х + 20 = 0
Теперь мы можем решить данное квадратное уравнение. Для этого воспользуемся формулой дискриминанта:
D = b^2 - 4ac, где a = -1, b = 8, c = 20.
D = 8^2 - 4 * (-1) * 20 = 64 + 80 = 144.
Так как дискриминант положительный, то уравнение имеет два вещественных корня.
Теперь найдем сами корни, используя формулу:
х = (-b ± √D) / 2a.
х₁ = (-8 + √144) / (2 * (-1)) = (-8 + 12) / (-2) = 4 / (-2) = -2. х₂ = (-8 - √144) / (2 * (-1)) = (-8 - 12) / (-2) = -20 / (-2) = 10.
Ответ: уравнение 36 - (4 - х)^2 = 0 имеет два корня: -2 и 10.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili