
Катер прошёл по течению 30км, а против течения 24 за 9ч. Чему равна собственная скорость катера ,
если течение реки 3км/ч? 8класс. Через дискриминант надо решать, вроде.

Ответы на вопрос

30/(х+3)+24(x-3)=9
30x-90+24x+72=9(x²-9)
54x-18=9x²-81
9x²-54x-63=0 I÷9
x²-6x-7=0 D=64
x₁=7 x₂=-1 x₂∉
Ответ: скорость катера 7 км/ч.



Problem Analysis
We are given that a boat traveled 30 km downstream and 24 km upstream in a total of 9 hours. The speed of the river current is given as 3 km/h. We need to find the speed of the boat in still water.Solution
Let's assume the speed of the boat in still water is x km/h.When the boat is traveling downstream, its effective speed is the sum of its own speed and the speed of the current. So, the effective speed downstream is (x + 3) km/h.
When the boat is traveling upstream, its effective speed is the difference between its own speed and the speed of the current. So, the effective speed upstream is (x - 3) km/h.
We are given that the boat traveled 30 km downstream and 24 km upstream in a total of 9 hours. We can set up the following equation based on the time and distance traveled:
30 / (x + 3) + 24 / (x - 3) = 9
To solve this equation, we can multiply both sides by (x + 3)(x - 3) to eliminate the denominators:
30(x - 3) + 24(x + 3) = 9(x + 3)(x - 3)
Simplifying the equation:
30x - 90 + 24x + 72 = 9(x^2 - 9)
54x - 18 = 9x^2 - 81
Rearranging the equation:
9x^2 - 54x + 63 = 0
Now, we can solve this quadratic equation using the discriminant.
Solving the Quadratic Equation
The quadratic equation we obtained is 9x^2 - 54x + 63 = 0.The discriminant (D) of a quadratic equation ax^2 + bx + c = 0 is given by D = b^2 - 4ac.
In our case, a = 9, b = -54, and c = 63.
Let's calculate the discriminant:
D = (-54)^2 - 4(9)(63)
D = 2916 - 2268
D = 648
Since the discriminant is positive, we have two real and distinct solutions for x.
The solutions for x can be found using the quadratic formula:
x = (-b ± √D) / (2a)
Substituting the values of a, b, and D:
x = (-(-54) ± √648) / (2(9))
x = (54 ± √648) / 18
Simplifying further:
x = (54 ± 18√4) / 18
x = (54 ± 18 * 2) / 18
x = (54 ± 36) / 18
Now, we can calculate the two possible values of x:
x₁ = (54 + 36) / 18 = 90 / 18 = 5
x₂ = (54 - 36) / 18 = 18 / 18 = 1
Since the speed of the boat cannot be negative, the speed of the boat in still water is 5 km/h.
Answer
The speed of the boat in still water is 5 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili